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Diffusion-limited friendship network: A model for six degrees of separation
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A dynamic model of a society is studied where each person is an uncorrelated and noninteracting random
walker. A dynamical random graph represents the acquaintance network of the society whose nodes are the
individuals and links are the pairs of mutual friendships. This network exhibits a different percolationlike phase
transition in all dimensions. On introducing simultaneous death and birth rates in the population, we show that
the friendship network shows the six degrees of separation for ever after where the precise value of the network
diameter depends on the death/birth rate. A susceptible-infected-susceptible—type model of disease spreading
shows that this society always remains healthy if the population density is less than certain threshold value.
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Though at present the human population of the world hagontact with other people. To make a simple model we have
attained a very large size, more thaix 60° precisely, it is  considered the diffusive motion of the individuals and mod-
believed that any two randomly selected persons in the worleéled the society by a set of random walkers. Specifically in
are connected by a short chain of intermediate acquaintancesr model(i) unlike static models the number of acquaintan-
typically of length 6. This phenomenon is referred as theces of a person evolves with tim@) irrespective of how
“six degrees of separation.” The idea originated from themany friends an infected person has, he may infect only
famous letter distribution experiment of Milgram in 1960s those friends who come to his close proximity, this is unlike
[1]. Since then, any network & nodes is said to display six the ordinary SIS-type models. What we achieve are as fol-
degrees of separation if its diameter is small and grows dbws: (i) with the introduction of a death/birth rate the soci-
most as lodN [2,3]. ety indeed shows the six degrees of separation efféqt,

Most human communications, especially the informationthere is a threshold density of population, below which the
exchanges, take place directly between individuals whesociety is always healthyjii) a very interesting theoretical
they are at close proximity to one another. The spread obbservation that the associated dynamical random graph has
news, rumors, jokes, and fashions—all take place by coma nontrivial dimension-dependent critical behavior.
munications among individuals. More importantly, the infec- Over past few years it is becoming increasingly evident
tious diseases also spread by person-to-person contact, atfét highly complex structures of many sodil, biological
the structure of network of such contacts has important eff9,10], electronic communication systerfi1,17, etc., can
fects on the nature of the epidemics. Naturally, the speed dfe modeled by simple graphs. Esdand Rayi studied the
spreading in general is faster for a network with small diam-well-known random graphdkG) of N nodes where each pair
eter. of nodes is connected with a probabilipyand the graph

There are important models of the social networks such ashows a continuous phase transitiorpat= 1/N [13]. Scale-
the small-world networkSWN) that displays the six degrees free networkgSFN) are characterized by the power law de-
of separationi2]. Also the process of spreading of epidemicscay of the nodal degree distribution functioR(k)~k™ 7.
is modeled by a susceptible-infected-susceptiBl&) model  Two very important networks in an electronic communica-
[4] in which a nonequilibrium phase transition takes placetion system such as World Wide W¢h1] and the Internet
from a healthy society to an infected society at a critical[12] are observed to possess the scale-free property. Baraba
value of the infection probability4—7]. and Albert(BA) proposed a model for a growing SFN where

All these models of the social networks as well as for thenodes are linked with the preferential attachment probability
spreading of the infectious diseases consider a static pictufd4,15. Other routes, e.g., statid6] and quasistati¢17]
of the society. More precisely, static individuals are posi-models to obtain SFNs are also studied. Assigning Hamil-
tioned at the nodes of certain graphs, and a person interadtsnian correlations are studied in the optimized networks
with only a fixed set of neighbors determined by the degredeeping biological networks in mingL8]. SWNs with ran-
of the node; whereas in actual society the number of acquairdom walkers capable of making long distance jumps are
tances of a person increases with time. Everyday a persastudied in Ref[19].
goes to office, market, theaters, clubs, etc., and therefore gets In our model each member of the society executes a
acquainted with other people who were unknown to him. Bysimple uncorrelated and noninteracting random walk on a
the same movements a person becomes exposed to infectioregular lattice. Initially the population di persons is re-
by others or transfers his own infection to others. Again noteased on the square lattice of sike<L at randomly se-
all the friends of an infected person has the chance of gettintgcted positions. The system then starts evolving with time.
infection, only those friends who come close to this persorAt each time step each person makes a jump to one of its
has the risk of infection. In this paper we study this basicneighboring lattice positions with equal probabilities. Each
property of a dynamical society where individuals are notperson represents a node of the growing acquaintance net-
static objects but move continuously, and therefore come imvork, and a link is established between two nodes the mo-
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o FIG. 2. The scaling of the order parameémp,N) at the critical
FIG. 1. Plgt of the scaled characterlstlg tlmﬁs(opaqu.e sym- region po(N) in the DRG:N=64 (circle), 128 (square, and 256
bols) and7;, (filled symbols vs the system sizke for three different (triangle

populations:N =32 (circle), 64 (square, and 128(triangle.

ment the corresponding pair of persons come in contact tehe system. At a second characteristic tifije- LZ /N, the
each other at the same position and at the same [  DRG becomes aN-clique wherez’ anda’ are estimated as
Gradually the number of links among the individuals grow. 22 and—0.33, respectively, fow=1/2 andd=2. The
Thus the set oN nodes and the set of links among thesepositive value ofa and the negative value af' are consis-
nodes define our network called as the diffusion limitedient with the intuition: for a fixed. but with increasing\,
friendship networKDLFN), whereas the associated graph isjess number of steps per person are necessary for the giant
referred as the dynamical random graiiiRG). ~component to include all nodes, but a larger number of steps
All persons who are at the same lattice site immediatelyyre required to form thal-clique. The values of andz’ are
become friends, and the associated subgraph with thesmzew to be the same.
people become a clique. At each time many such cliques are The link densityp(t,N) at a timet for anN-node network
formed at different sites. All these cliques remain forever,is defined as the ratio of the number of links to its maximum

they never get destroyed, moreover, they grow in size as timgossible numbeN(N—1)/2. Numerically, we find the fol-
proceeds. At the early times, the number of links is smalljowing scaling form:

and the DRG has many different isolated components of dif-
ferent sizes. The size of a component is determined by its
number of nodes and the giant component has the largest
size. The giant component not only grows by including new
nodes into it but also by the process of merging equally largevhere the scaling functiod(x) ~x* and « and z are ap-
components. After some slow initial growth the giant com-proximately found to be 0.89 and 2.25 again.
ponent grows very fast and its size becomes proportional to The order parametap(p,N) of this transition is the av-
N. This behavior is just like the threshold phenomenon in arage fraction of nodes in the giant component for a link
continuous phase transition, e.g., what happens in a randodiensityp. The critical link density at the transition poipg is
graph[13]. The whole DRG ultimately reaches the limiting defined byy(p:,N)=1/2 and is observed to vary witk as
stage of a gianiN-clique when each node is linked to all p.=b/N® with b~1.28 anda~0.89 as before. As the
other nodes. mean-field calculation gave=1/ud, we see that only the
We first characterize DRG to compare with RG. DRG hasordinary random walks in two dimensions wiph=1/N cor-
two characteristic time scaled, measures the time required respond to the random grapfik3], but for other walks with
for the phase transition and is observed to vary LiKEN®. different x and in different dimensiong.(N) have non-
In a mean-field limit when the density=N/L® is small, this  trivial dimension dependence. A scaling plot for the order
variation is estimated in the following way: If a person ran- parameter is shown in Fig. 2, where we platp,N)N~#/*
domly walks a linear distanc® in d dimension in timeZ;,  vs[p—p.JNY". An excellent collapse of the data shows that
then R~7Z, and therefore aroundLYR? such the order parameter has the following scaling form:
d-dimensional spheres are needed to cover the volume of
size L, which is N itself. This givesT .~ LY*/NY#4 je., z
=1/u and a=1/ud in general, and therefore=2 and «
=1 for ordinary random walksi(=1/2) in two dimensions.
Figure 1 shows the scaled plot @f for differentL andN  with »~0.8 andg~0.02.
values, and a good collapse of the data is observedhfor ~ The topological distance between a pair of nodes is the
~0.89 andz~2.25. We believe that the difference in the number of links on the shortest path connecting them, and
exponents from the mean-field values are due to finite size dhe diameter is the maximum for such paths. The average

p(t,L)~F(t/LH), (€

$(p,N)~NP"G[ (p—pI)NY"], @
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. . , FIG. 4. The variation of the activith(r) of the SIS model on
FIG. 3. The fluctuating diamete®(N,t) and D"(N,1) of the DLFN with the infection probabilityr for p=1.2, and it vanishes at

DLFN (q.:tl,?'?s’ N?§4,Id_=t64) plotted in t:e uppelrognd thf? Iowsr r.. The inset shows the variation of the critical infection probability
curves with time. The data are averaged over configurations )y \yith population density.

and have steady averages of 610005 and 2.8% 0.05. ¢

dividuals is to make the diameters fluctuate around their

diameterD(N) is measured over many independent configu-gieady averages whose magnitudes must depend on the rate

rations. The configuration average of the mean distance bej; geath/birth processes. In Fig. 3 we show the time variation
tween an arbitrary pair of nodes is denoted¥y(N). As the of these diameters, and for=64N=64 the diameter

system evolves, both measures first increase with time, reacﬁ(q N,L) has a value very near to 6 for=0.43 whereas
their maxima, and then decrease very slowly, and finallyp,(d N L) is around 2.85. As expected, the diameters in-
saturate to a fixed value for a long time. The maximum of the Y T '

diameters occurs at the characteristic tirigsAs expected, crease with decreasirg

the nodal degree distribution of the giant component at the Finally, we study a ;usceptiblle-inf.ected—susceptible. model
transition point is a Poisson distribution similar to RG, since®" the DLFN. At any time a lattice site may be occupied by

there is no preferential link attachment probability in this @ NUmber of persons. If at least one of them is infected, each
model as in the scale-free networks. of the other healthy persons at that site has a probabitiby

The network described so far has a major drawback that €come infected, and with a probability-T it remains
assumes each individual as immortal. As a consequence, t€althy. An infected person at tineoecomes healthy at the
DRG becomes anl-clique at time7.,. To make our model Next time step. For a certain average dengifythe average
more realistic, we therefore introduce a probability of deathffaction of infected persons in the system fluctuates but
and birth in the population but with equal rates to keep thénaintains a steady time-independent avera@ep). In Fig.
population conserved. More precisely, at each time step onl$ we show that the average activi®(r,p) vanishes forr
one randomly selected individual is killed with a probability <r., and it continuously increases beyond The threshold
g. As a consequence, all links associated with the node rep~ is the critical point of a phase transition from a completely
resenting this individual are immediately deleted. This mayhealthy society to an infected society. TA¢r,p) plays the
result the fragmentation of the particular component of theole of the order parameter in this transition. We also notice
dynamical graph which belonged to this node. A fresh deterthatr is in general a function of the population densgityln
mination of the different components of the DLFN, espe-the inset of Fig. 4 we plot the variation of(p) with p. The
cially the giant component, is done immediately before thevalue of the critical infection probability decreases with in-
system proceeds to the next time step. At the same time wereasing the population density; i.e., more the density, it is
assume that a fresh individual has taken birth at the sammore likely that the infection really spreads. On the other
position of the dead individual so that the population conserhand, below a certain density<p., infection does not
vation is maintained. spread at all even with the maximum possible infection prob-

When an individual dies, the deletion of all his links may ability r.=1. For the square lattice we estimatg~0.75.
severely affect the distribution of distances between all pairs A number of different aspects of this model may be of
of nodes in the system. In fact, it is expected that in generaihterest. On average, a human being remains more or less
the distance between an arbitrary pair of nodes should intocalized up to his/her home, home city, or home country.
crease due to the death of an individual, which thus enhancéherefore perhaps it would be better to consider their motion
the values ofD(N,t) andD’(N,t). On the other hand, the as subdiffusive R?(t)~t?#, with ux<1/2] rather than nor-
newly born individual also starts diffusing in the system andmal diffusion. Second, DLFN may be important to study the
starts building up links of acquaintances with other individu-reaction kinetic networks of two-species reversible or irre-
als of the network. Therefore the magnitudes of the diamversible chemical reactions+ B« C.
eters decrease again. As a result, the net effect of the two To summarize, we have considered the evaluation of the
competitive processes of simultaneous death and birth of irmutual friendship network in a dynamic model of a society.
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Each member of the society executes a diffusive motionhealthy if the average population density is below certain
Members of the society represent nodes of the network, anthreshold value, which should have very important practical
their mutual friendships are the links. The dynamical randontonsequences.

graph associated with the network shows a dimension-

dependent phase transition. With a certain death/birth prob- | thank P. Sen for some initial discussions, D. Dhar for
ability, the network displays the six degrees of separatiorsome useful comments, and Brian Hayes for pointing out the
effect. We also observe that such a society remains alwaysaper by J. S. Kleinfeldl1].
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