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Diffusion-limited friendship network: A model for six degrees of separation
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A dynamic model of a society is studied where each person is an uncorrelated and noninteracting random
walker. A dynamical random graph represents the acquaintance network of the society whose nodes are the
individuals and links are the pairs of mutual friendships. This network exhibits a different percolationlike phase
transition in all dimensions. On introducing simultaneous death and birth rates in the population, we show that
the friendship network shows the six degrees of separation for ever after where the precise value of the network
diameter depends on the death/birth rate. A susceptible-infected-susceptible–type model of disease spreading
shows that this society always remains healthy if the population density is less than certain threshold value.
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Though at present the human population of the world
attained a very large size, more than 63109 precisely, it is
believed that any two randomly selected persons in the w
are connected by a short chain of intermediate acquaintan
typically of length 6. This phenomenon is referred as
‘‘six degrees of separation.’’ The idea originated from t
famous letter distribution experiment of Milgram in 196
@1#. Since then, any network ofN nodes is said to display si
degrees of separation if its diameter is small and grows
most as logN @2,3#.

Most human communications, especially the informat
exchanges, take place directly between individuals w
they are at close proximity to one another. The spread
news, rumors, jokes, and fashions—all take place by co
munications among individuals. More importantly, the infe
tious diseases also spread by person-to-person contact
the structure of network of such contacts has important
fects on the nature of the epidemics. Naturally, the spee
spreading in general is faster for a network with small dia
eter.

There are important models of the social networks such
the small-world network~SWN! that displays the six degree
of separation@2#. Also the process of spreading of epidemi
is modeled by a susceptible-infected-susceptible~SIS! model
@4# in which a nonequilibrium phase transition takes pla
from a healthy society to an infected society at a criti
value of the infection probability@4–7#.

All these models of the social networks as well as for
spreading of the infectious diseases consider a static pic
of the society. More precisely, static individuals are po
tioned at the nodes of certain graphs, and a person inte
with only a fixed set of neighbors determined by the deg
of the node; whereas in actual society the number of acqu
tances of a person increases with time. Everyday a pe
goes to office, market, theaters, clubs, etc., and therefore
acquainted with other people who were unknown to him.
the same movements a person becomes exposed to infec
by others or transfers his own infection to others. Again
all the friends of an infected person has the chance of get
infection, only those friends who come close to this pers
has the risk of infection. In this paper we study this ba
property of a dynamical society where individuals are n
static objects but move continuously, and therefore com
1063-651X/2003/68~2!/027104~4!/$20.00 68 0271
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contact with other people. To make a simple model we h
considered the diffusive motion of the individuals and mo
eled the society by a set of random walkers. Specifically
our model~i! unlike static models the number of acquainta
ces of a person evolves with time~ii ! irrespective of how
many friends an infected person has, he may infect o
those friends who come to his close proximity, this is unli
the ordinary SIS-type models. What we achieve are as
lows: ~i! with the introduction of a death/birth rate the soc
ety indeed shows the six degrees of separation effect,~ii !
there is a threshold density of population, below which t
society is always healthy,~iii ! a very interesting theoretica
observation that the associated dynamical random graph
a nontrivial dimension-dependent critical behavior.

Over past few years it is becoming increasingly evide
that highly complex structures of many social@8#, biological
@9,10#, electronic communication systems@11,12#, etc., can
be modeled by simple graphs. Erdo¨s and Re´nyi studied the
well-known random graphs~RG! of N nodes where each pa
of nodes is connected with a probabilityp and the graph
shows a continuous phase transition atpc51/N @13#. Scale-
free networks~SFN! are characterized by the power law d
cay of the nodal degree distribution function:P(k);k2g.
Two very important networks in an electronic communic
tion system such as World Wide Web@11# and the Internet
@12# are observed to possess the scale-free property. Bara´si
and Albert~BA! proposed a model for a growing SFN whe
nodes are linked with the preferential attachment probab
@14,15#. Other routes, e.g., static@16# and quasistatic@17#
models to obtain SFNs are also studied. Assigning Ham
tonian correlations are studied in the optimized netwo
keeping biological networks in mind@18#. SWNs with ran-
dom walkers capable of making long distance jumps
studied in Ref.@19#.

In our model each member of the society execute
simple uncorrelated and noninteracting random walk on
regular lattice. Initially the population ofN persons is re-
leased on the square lattice of sizeL3L at randomly se-
lected positions. The system then starts evolving with tim
At each time step each person makes a jump to one o
neighboring lattice positions with equal probabilities. Ea
person represents a node of the growing acquaintance
work, and a link is established between two nodes the m
©2003 The American Physical Society04-1
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ment the corresponding pair of persons come in contac
each other at the same position and at the same time@20#.
Gradually the number of links among the individuals gro
Thus the set ofN nodes and the set of links among the
nodes define our network called as the diffusion limit
friendship network~DLFN!, whereas the associated graph
referred as the dynamical random graph~DRG!.

All persons who are at the same lattice site immediat
become friends, and the associated subgraph with th
people become a clique. At each time many such cliques
formed at different sites. All these cliques remain forev
they never get destroyed, moreover, they grow in size as
proceeds. At the early times, the number of links is sm
and the DRG has many different isolated components of
ferent sizes. The size of a component is determined by
number of nodes and the giant component has the lar
size. The giant component not only grows by including n
nodes into it but also by the process of merging equally la
components. After some slow initial growth the giant co
ponent grows very fast and its size becomes proportiona
N. This behavior is just like the threshold phenomenon i
continuous phase transition, e.g., what happens in a ran
graph@13#. The whole DRG ultimately reaches the limitin
stage of a giantN-clique when each node is linked to a
other nodes.

We first characterize DRG to compare with RG. DRG h
two characteristic time scales.Tc measures the time require
for the phase transition and is observed to vary likeLz/Na.
In a mean-field limit when the densityr5N/Ld is small, this
variation is estimated in the following way: If a person ra
domly walks a linear distanceR in d dimension in timeTc ,
then R;T c

m , and therefore around Ld/Rd such
d-dimensional spheres are needed to cover the volum
size L, which is N itself. This givesT c;L1/m/N1/md, i.e., z
51/m and a51/md in general, and thereforez52 and a
51 for ordinary random walks (m51/2) in two dimensions.
Figure 1 shows the scaled plot ofTc for different L and N
values, and a good collapse of the data is observed foa
'0.89 andz'2.25. We believe that the difference in th
exponents from the mean-field values are due to finite siz

FIG. 1. Plot of the scaled characteristic timesTc ~opaque sym-
bols! andTc8 ~filled symbols! vs the system sizeL for three different
populations:N532 ~circle!, 64 ~square!, and 128~triangle!.
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the system. At a second characteristic timeTc8;Lz8/Na8, the
DRG becomes anN-clique wherez8 anda8 are estimated as
2.22 and20.33, respectively, form51/2 and d52. The
positive value ofa and the negative value ofa8 are consis-
tent with the intuition: for a fixedL but with increasingN,
less number of steps per person are necessary for the
component to include all nodes, but a larger number of st
are required to form theN-clique. The values ofz andz8 are
likely to be the same.

The link densityp(t,N) at a timet for anN-node network
is defined as the ratio of the number of links to its maximu
possible numberN(N21)/2. Numerically, we find the fol-
lowing scaling form:

p~ t,L !;F~ t/Lz!, ~1!

where the scaling functionF(x);xa and a and z are ap-
proximately found to be 0.89 and 2.25 again.

The order parameterc(p,N) of this transition is the av-
erage fraction of nodes in the giant component for a l
densityp. The critical link density at the transition pointpc is
defined byc(pc ,N)51/2 and is observed to vary withN as
pc5b/Na, with b'1.28 and a'0.89 as before. As the
mean-field calculation gavea51/md, we see that only the
ordinary random walks in two dimensions withpc51/N cor-
respond to the random graphs@13#, but for other walks with
different m and in different dimensionspc(N) have non-
trivial dimension dependence. A scaling plot for the ord
parameter is shown in Fig. 2, where we plotc(p,N)N2b/n

vs @p2pc#N
1/n. An excellent collapse of the data shows th

the order parameter has the following scaling form:

c~p,N!;Nb/nG@~p2pc!N
1/n#, ~2!

with n'0.8 andb'0.02.
The topological distance between a pair of nodes is

number of links on the shortest path connecting them,
the diameter is the maximum for such paths. The aver

FIG. 2. The scaling of the order parameterc(p,N) at the critical
region pc(N) in the DRG:N564 ~circle!, 128 ~square!, and 256
~triangle!.
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diameterD(N) is measured over many independent config
rations. The configuration average of the mean distance
tween an arbitrary pair of nodes is denoted byD8(N). As the
system evolves, both measures first increase with time, re
their maxima, and then decrease very slowly, and fina
saturate to a fixed value for a long time. The maximum of
diameters occurs at the characteristic timesTc . As expected,
the nodal degree distribution of the giant component at
transition point is a Poisson distribution similar to RG, sin
there is no preferential link attachment probability in th
model as in the scale-free networks.

The network described so far has a major drawback th
assumes each individual as immortal. As a consequence
DRG becomes anN-clique at timeTc8 . To make our model
more realistic, we therefore introduce a probability of de
and birth in the population but with equal rates to keep
population conserved. More precisely, at each time step o
one randomly selected individual is killed with a probabili
q. As a consequence, all links associated with the node
resenting this individual are immediately deleted. This m
result the fragmentation of the particular component of
dynamical graph which belonged to this node. A fresh de
mination of the different components of the DLFN, esp
cially the giant component, is done immediately before
system proceeds to the next time step. At the same time
assume that a fresh individual has taken birth at the s
position of the dead individual so that the population cons
vation is maintained.

When an individual dies, the deletion of all his links ma
severely affect the distribution of distances between all p
of nodes in the system. In fact, it is expected that in gen
the distance between an arbitrary pair of nodes should
crease due to the death of an individual, which thus enhan
the values ofD(N,t) and D8(N,t). On the other hand, the
newly born individual also starts diffusing in the system a
starts building up links of acquaintances with other individ
als of the network. Therefore the magnitudes of the dia
eters decrease again. As a result, the net effect of the
competitive processes of simultaneous death and birth o

FIG. 3. The fluctuating diametersD(N,t) and D8(N,t) of the
DLFN (q50.43,N564, L564) plotted in the upper and the lowe
curves with time. The data are averaged over 100 configurat
and have steady averages of 6.0060.05 and 2.8760.05.
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dividuals is to make the diameters fluctuate around th
steady averages whose magnitudes must depend on theq
of death/birth processes. In Fig. 3 we show the time variat
of these diameters, and forL564,N564 the diameter
D(q,N,L) has a value very near to 6 forq50.43 whereas
D8(q,N,L) is around 2.85. As expected, the diameters
crease with decreasingq.

Finally, we study a susceptible-infected-susceptible mo
on the DLFN. At any time a lattice site may be occupied
a number of persons. If at least one of them is infected, e
of the other healthy persons at that site has a probabilityr to
become infected, and with a probability 12r it remains
healthy. An infected person at timet becomes healthy at th
next time step. For a certain average densityr, the average
fraction of infected persons in the system fluctuates
maintains a steady time-independent averageA(r ,r). In Fig.
4 we show that the average activityA(r ,r) vanishes forr
,rc , and it continuously increases beyondr c . The threshold
r c is the critical point of a phase transition from a complete
healthy society to an infected society. TheA(r ,r) plays the
role of the order parameter in this transition. We also not
thatr c is in general a function of the population densityr. In
the inset of Fig. 4 we plot the variation ofr c(r) with r. The
value of the critical infection probability decreases with i
creasing the population density; i.e., more the density, i
more likely that the infection really spreads. On the oth
hand, below a certain densityr,rc , infection does not
spread at all even with the maximum possible infection pr
ability r c51. For the square lattice we estimaterc'0.75.

A number of different aspects of this model may be
interest. On average, a human being remains more or
localized up to his/her home, home city, or home coun
Therefore perhaps it would be better to consider their mot
as subdiffusive@R2(t);t2m, with m,1/2] rather than nor-
mal diffusion. Second, DLFN may be important to study t
reaction kinetic networks of two-species reversible or ir
versible chemical reactionsA1B↔C.

To summarize, we have considered the evaluation of
mutual friendship network in a dynamic model of a socie

ns

FIG. 4. The variation of the activityA(r ) of the SIS model on
DLFN with the infection probabilityr for r51.2, and it vanishes a
r c . The inset shows the variation of the critical infection probabil
r c(r) with population densityr.
4-3



on
a
om
ion
ro
io
a

ain
cal

or
the

BRIEF REPORTS PHYSICAL REVIEW E68, 027104 ~2003!
Each member of the society executes a diffusive moti
Members of the society represent nodes of the network,
their mutual friendships are the links. The dynamical rand
graph associated with the network shows a dimens
dependent phase transition. With a certain death/birth p
ability, the network displays the six degrees of separat
effect. We also observe that such a society remains alw
l
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healthy if the average population density is below cert
threshold value, which should have very important practi
consequences.
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